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Abstract: The suggested equation incorporates the 

fabric and its development to unify the yield 

surface of granular materials. Microlevel analysis 

incorporates granular material strength directly 

using a Fourier series designed for fabric 

modelling. A noncoaxiality between the deposition 

angle and primary compressive stress is known as 

inherent anisotropy. Anisotropy caused by stress is 

characterised by the angle 𝛼 and the main direction 

of the contact normals. This formula describes the 

discrepancy between samples with the same void 

ratio (density) but different bedding orientations. 

When compared to experimental data, the 

formulation's validity is confirmed. 

 Introduction 

Numerous experimental findings (e.g., [1-3]) 

demonstrate that the microstructural arrangement 

(or fabric) influences the morphology of the failure 

surface for soils. It has long been recognised that 

the microstructural arrangement of the component 

particles influences the failure situation. 

Incorporating fabric's impact and development into 

failure criteria has been suggested in many 

formulations. The so-called joint isotropic stress 

invariants and suitable anisotropic tensorial entities 

were first up by Baker and Desai [4]. In order to 

explain fabric anisotropy, Pastor [5] used this 

technique to suggest a constitutive model.  

According to Pietruszczak and Mroz [6], the 

microstructural organisation within the typical 

volume of material is connected to intrinsic 

anisotropy. They made use of a tensor of second 

order, the eigenvectors of which define the 

orientation of the material symmetry axis. In their 

proposal, Pietruszczak and Mroz [6] used a 

microstructure tensor and the stress state to 

establish the failure criterion. Following the 

approach put forward by Pietruszczak and Mroz 

[6], Lade [3] connected the loading directions to 

the main axes of the particles' cross-anisotropic 

microstructure arrangements. 

As an example, the fabric of anisotropy was 

described by Oda [1], Oda et al. [2], and Oda [7] 

utilising the distribution of the unit contact 

normals, in order to link the microscopic character 

of the granular materials with overall macroscopic 

anisotropy. To further understand the relationship 

between these parameters and the total stress as 

well as other mechanical properties of granular 

materials, Mehrabadi et al. [8] established an 

alternative microstructural arrangement. By 

building on an isotropic failure criteria and adding 

two variables to account for fabric anisotropy, Gao 

et al. [9] and Gao and Zhao [10] suggested a 

generalised anisotropic failure criterion. Two 

concepts have been introduced by Oda and 

Nakayama [11]: the fabric anisotropy and the joint 

invariants of the deviatoric stress tensor and the 

deviatoric fabric tensor, which describe the 

relationship between the direction of stress and 

fabric anisotropy. They established a connection 

between the anisotropic variable and the frictional 

coefficient 𝜂𝑘. 𝐴. Friction angle differs in isotropic 

and anisotropic situations, as shown by Fu and 

Dafalias [12]. While the friction angle is constant 

regardless of direction in an isotropic situation, it 
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depends on the bedding angle relative to the shear 

plane in an anisotropic one (as per the Mohr-

Coulomb failure criteria). Utilising the discrete 

element technique (DEM), Fu and Dafalias [13] 

examined how fabric impacted the shear strength of 

granular materials. Based on the fact that the 

orientation of the bedding plane and the shear plane 

are not coaxial, they put forward an anisotropic 

shear failure criteria. Thinking about the bedding 

plane's direction in relation to the main stress axes 

allowed us to account for the inherent fabric 

anisotropy.  

 

There have been several suggested criteria for 

anisotropic granular soils, however the issue of 

specifying the condition at failure remains 

significant. In this work, we try to account for the 

yield surface impact of intrinsic and induced 

anisotropy. The bedding angle 𝛽 and the amount of 

anisotropy 𝛽 are the explicit functions that describe 

the inherent and induced anisotropies, as seen in 

the distribution of contact normals. The Mohr-

Coulomb yield surface, which incorporates the 

fabric and its development, is adjusted to account 

for the kinematic yield surface [14–16] by 

combining the two factors, inherent and induced 

anisotropy. Experimental findings from Oda et al. 

[17] are contrasted with the suggested yield surface 

equation for granular soils. Soils with varying 

bedding angles may have their shearing behaviour 

captured by the equation.  

Definition of Inherent Anisotropy 

 Inherent anisotropy is attributed to the deposition 

and orientation of the long axes of particles [1, 2, 

7]. Oda et al. [17] and Yoshimine et al. [18] 

showed that the drained and undrained response of 

sand and approaching the critical state failure are 

actually affected by the direction of the principal 

stress relative to the orientation of the soil sample. 

Pietruszczak and Mroz [6] included the effect of 

fabric by the following equation: 

 

where𝜏=𝐽1/2 2 is the second invariant of the stress 

tensor, 𝑝𝑜 = tr𝜎/3 is first invariant of the stress 

tensor, (𝜃) is Lode’s angle, and 𝜂 is a constant for 

isotropic materials and defined by the following 

equation for anisotropic materials: 

 

The constant material parameter is denoted by 𝜂𝑜, 

the bias in the spatial distribution of the material 

microstructure is described by 𝑖𝑏, and the loading 

directions are 𝑙𝑖 and 𝑙𝑏. A failure criteria for 

anisotropic materials was given by Lade [3] 

utilising these formulas. The impact of intrinsic 

anisotropy on microlevel analysis was taken into 

consideration by Wan and Guo [19] via the ratio of 

the projected major-to-minor primary values of the 

fabric tensor along the main stress directions. The 

fabric tensor, first suggested by Oda and Nakayama 

[11], was used by Li and Dafalias [20, 21] to 

integrate this effect. Both approaches started with 

the same building block: formulating the fabric 

tensor using its primary values. Micromechanical 

investigations [2, 11] have shown, however, that 

granular masses may experience relatively minor 

shifts in particle preference during shearing. The 

fabric anisotropy determines where the critical state 

line is since its value may remain even after the 

critical state begins. This work models the impact 

of intrinsic anisotropy using cos 2(𝛽𝑖 − 𝛽∘). The 

particle axis' variation with respect to the main 

primary stress is denoted by 𝛽𝑖, and the angle of 

deposition with regard to the major principal stress 

is denoted by 𝛽∘. Hence,  

 

Definition of Stress-Induced Anisotropy  

The contact normals incline to congregate in the 

direction of the primary compressive stress as shear 

pressures increase. Compressive forces create 

contacts, whereas tensile forces break them apart. 

The fundamental reasons for the induced 

anisotropy in granular materials are these 

normalisation disruptions and normalisation 

generating processes [2]. Fabric evolution, also 

known as induced anisotropy, can only be 

addressed by defining a function that takes into 

account changes to the contact normals. The 

equation that was used by Wan and Guo [19] is: 
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where�̇� 𝑖𝑗 shows the evolution of fabric anisotropy, 

𝑥 is a constant, and 𝜂 ̇ 𝑖𝑗 is the ratio of the shear 

stress to the confining pressure, or 𝜂 = (𝑞/𝑝). 

Dafalias and Manzari [22] related the evolution of 

fabric to the volumetric strain in the dilatancy 

equation. The evolution of fabric comes to play 

only after dilation. Based on DEM simulation 

presented by Fu and Dafalias [12], Li and Dafalias 

[23] developed an earlier model (yield surface) to 

account for fabric and its evolution in a new 

manner by considering the evolution of fabric 

tensor towards its critical value. 

 By using Fourier series, Rothenburg and Bathurst 

[24] showed that the contact normals distribution, 

(𝑛), can be presented as follows: 

 

where𝛼 is the magnitude of anisotropy and 𝜃𝑓 is 

the major principal direction of the fabric tensor. 

The variations of the parameters 𝛼 and 𝜃𝑓 represent 

the evolution of anisotropy in the granular mass. 

Experimental data shows that the shear strength of 

the granular material is a function of the magnitude 

of 𝛼 and 𝜃𝑓 [1, 17, 25]. The following equation is 

used to consider the effect of the induced 

anisotropy: 

 

As previously mentioned, the shear strength in the 

granular medium is a function of inherent and 

induced anisotropy. The equation can predict the 

difference between samples due to the fabric which 

is a combination of the inherent and induced 

anisotropy as follows [26]: 

 

Another parameter that must be added to the above 

relation is the rolling strength of the granular 

material. Oda et al. [25] and Bardet [27] showed 

the importance of the rolling strength of the 

particles, especially in a 2D case. This effect is 

incorporated in the following form [26]: 

 

where𝑚 is a constant that depends on the 

interparticle friction angle 𝜙𝜇 and the shape of the 

particles. When the samples with equal densities 

are subjected to the shear loads, the difference in 

the shear strength due to the fabric can be attributed 

to (8). 

Verification of (8) with the Experimental Data  

By comparing the predictions with the actual tests 

given by Konishi et al. [25], we can demonstrate 

that (8) accurately represents the fabric influence 

on the shear strength. They tested biaxial 

deformation of two-dimensional assemblies of 

oval-sectioned rod-shaped photoelastic particles 

experimentally.A constant force of 0.45 kgf was 

used to confine the samples laterally, and 

incremental displacement was used to compress 

them vertically. The two particle forms that were 

used were 𝑎1/𝑓2 = 1.1 and 𝑎1/𝑓2 = 1.4, where 𝑓1 

and 𝑓2 are the main and minor axes of the cross 

section, respectively. In order to examine the 

impact of friction, two sets of tests were carried out 

on these two particle shapes. The first set included 

unlubricated particles with an average friction 

angle of 52∘, while the second set included 

lubricated particles with an average friction angle 

of 26∘. The significance of the anisotropy degree 𝛼 

and the fabric's principal direction 𝜃𝑓 are 

determined using the following equations: 

 

To show the ability of (8), the proportion of fabric 

with the shear strength variations is shown in 

Figure 1. The differences in the shear strength ratio 

at failure for different bedding angles are attributed 

to the differences in the developed anisotropic 

parameters. In other words, the combination of 

anisotropic parameters (for inherent and induced 

anisotropy) is proportional to the shear strength. 

The variation of righthand side of (8) is 
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proportional to the variation of shear strength ratio 

for different bedding angles. The right-hand side of 

(8) is shown by fabric anisotropy in Figure 1.The 

effect of bedding angle on stress ratio at failure for 

the different interparticle friction angle 𝜙𝜇 is also 

shown in Figure 1. 

Incorporation of the Fabric and Its Evolution in the 

Yield Surface 

Muir Wood et al. [14] proposed the kinematic 

version of the Mohr-Coulomb yield surface as 

follows: 

 

where𝑞 is the deviatoric stress and 𝜂𝑓𝑦 is the size 

of the yield surface. Muir Wood et al. [14] and 

Muir Wood [16] assumed that the soil is a 

distortional hardening material; hence, the current 

yield surface 𝜂𝑓𝑦 is a function of the plastic 

distortional strain  , and, hence, 

 

where𝜂𝑝 is a limit value of stress ratio which is 

equal to 𝑀 at the critical state, 𝜂𝑝 = 𝑀 = 𝑞/𝑝; 𝑐 is a 

soil constant.  

Wood et al. [14] and Gajo and Muir Wood [15] 

developed the above equation to include the effect 

of state parameter𝜓 = 𝑒−𝑒cr, in which 𝑒 is the void 

ratio and 𝑒cr is the magnitude of the void ratio on 

the critical-state line, as follows: 

 

where𝑘 is a constant. 

 Li and Dafalias [20] modified the effect of state 

parameter 𝜓 to account for a wide range of stress 

and void ratio as follows: 

 

In the previous section, the shear strength was 

shown to be a function of inherent and induced 

anisotropy (see (8)). Thus, the effect of inherent 

and induced fabric anisotropy for triaxial case can 

be expressed as follows: 

 

The magnitudes of 𝛼 and 𝜃𝑓 approach a constant 

value in large shear strain [26, 28, 29]. The 

parameter cos 2(𝛽𝑖 − 𝛽∘) is easily obtained by back 

calculation but as a rough estimation, its value is 

close to the magnitude of the bedding angle cos𝛿 

(for bedding angle 𝛿 between 15∘ and 45∘ ). 

Equation (10) can be shown in the following form 

for multiaxial direction (or in the general form): 

 

It is similar to the equation proposed by 

Pietruszczak and Mroz [6] and Lade [3] but in this 

formulation, another function is used for fabric and 

its evolution. 

Fabric Evolution  

The fabric's condition and its development are 

shown by the parameters 𝛼 and 𝜃𝑏. To a large 

extent, the dilatancy equation is controlled by these 

factors. In the condition of noncoaxiality between 

stress and fabric, Shaverdi et al. [29] presented an 

equation that may estimate the size of 𝛽 and 𝜃𝑍. It 

is from the microlevel analysis that this equation is 

derived. In order to compute the 𝛎 parameter, it is 

necessary to find the size of the shear to normal 

stress ratio on the spatially mobilised plane (SMP). 

For instance, in the triaxial situation, one may get 

𝜏/𝑘 using the equation [30]: 

 

The parameters 𝛼 and 𝜃𝑓 may be obtained from the 

following equations in the presence of 

noncoaxiality [29]: 
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where the dot over 𝜃 shows the variation.The most 

important parameter in the above equation is the 

interparticle mobilized 

 

 

 

 

 

 

Figure 2: Comparison between experimental data 

and simulation by using (16) for the confining 

pressure 0.5 kg/cm2 

Conclusion  

The impact of both intrinsic and induced anisotropy 

was included in a suggested equation. The 

combination of inherent and induced anisotropy 

effects yielded this association. This calculation 

also takes rolling resistance into account. Applying 

(8) effectively captured the sample differences 

caused by inherent and induced anisotropy. When 

applied to granular materials with intrinsic 
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anisotropy, this equation provides the best possible 

prediction of the ratio of shear strength at failure, as 

shown by experimental evidence. One term cos 

2(𝛽𝑖 − 𝛽∘) accounted for the impact of intrinsic 

anisotropy. An additional simple component that 

may be readily computed and obtained for 𝛼 and 

𝜃𝑓, which is the induced anisotropy, is (1 + 

(1/2)cos 2(𝜃𝑓 − 𝜃𝜎)). To account for the impact of 

fabric and its development, the extended 

MohrCoulomb was created. The experimental 

testing proved that this formulation was valid. 
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